In this section we will formally define the definite integral and give many of the properties of definite integrals. Let’s start off with the definition of a definite integral.
Definite Integral
Given a function ![]() ![]() ![]() ![]() ![]() ![]() |
The definite integral is defined to be exactly the limit and summation that we looked at in the last section to find the net area between a function and the x-axis. Also note that the notation for the definite integral is very similar to the notation for an indefinite integral. The reason for this will be apparent eventually.
There is also a little bit of terminology that we should get out of the way here. The number “a” that is at the bottom of the integral sign is called the lower limit of the integral and the number “b” at the top of the integral sign is called the upper limit of the integral. Also, despite the fact that a and bwere given as an interval the lower limit does not necessarily need to be smaller than the upper limit. Collectively we’ll often call a and b the interval of integration.
Let’s work a quick example. This example will use many of the properties and facts from the brief review of summation notation in the Extras chapter.
Example 1 Using the definition of the definite integral compute the following. ![]() ![]() Solution First, we can’t actually use the definition unless we determine which points in each interval that well use for ![]() ![]() ![]() ![]() From the previous section we know that for a general n the width of each subinterval is, ![]() ![]() The subintervals are then, ![]() ![]() ![]() As we can see the right endpoint of the ith subinterval is ![]() ![]() ![]() The summation in the definition of the definite integral is then, ![]() ![]() ![]() Now, we are going to have to take a limit of this. That means that we are going to need to “evaluate” this summation. In other words, we are going to have to use the formulas given in thesummation notation review to eliminate the actual summation and get a formula for this for a general n. To do this we will need to recognize that n is a constant as far as the summation notation is concerned. As we cycle through the integers from 1 to n in the summation only i changes and so anything that isn’t an i will be a constant and can be factored out of the summation. In particular any n that is in the summation can be factored out if we need to. Here is the summation “evaluation”. ![]() ![]() We can now compute the definite integral. ![]() ![]() We’ve seen several methods for dealing with the limit in this problem so I’ll leave it to you to verify the results. |
Wow, that was a lot of work for a fairly simple function. There is a much simpler way of evaluating these and we will get to it eventually. The main purpose to this section is to get the main properties and facts about the definite integral out of the way. We’ll discuss how we compute these in practice starting with the next section.
So, let’s start taking a look at some of the properties of the definite integral.
Properties
1. ![]() ![]() 2. ![]() ![]() 3. ![]() ![]() 4. ![]() ![]() 5. ![]() ![]() 6. ![]() ![]() |
Let’s do a couple of examples dealing with these properties.
Example 2 Use the results from the first example to evaluate each of the following. Solution All of the solutions to these problems will rely on the fact we proved in the first example. Namely that, ![]() ![]() In this case the only difference between the two is that the limits have interchanged. So, using the first property gives, ![]() ![]() ![]() For this part notice that we can factor a 10 out of both terms and then out of the integral using the third property. ![]() ![]() In this case the only difference is the letter used and so this is just going to use property 6. ![]() ![]() ![]() |
Here are a couple of examples using the other properties.
Example 3 Evaluate the following definite integral. ![]() ![]() ![]() Solution There really isn’t anything to do with this integral once we notice that the limits are the same. Using the second property this is, ![]() ![]() ![]() |
Example 4 Given that ![]() ![]() ![]() ![]() ![]() ![]() Solution We will first need to use the fourth property to break up the integral and the third property to factor out the constants. ![]() ![]() Now notice that the limits on the first integral are interchanged with the limits on the given integral so switch them using the first property above (and adding a minus sign of course). Once this is done we can plug in the known values of the integrals. ![]() |
Example 5 Given that ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Solution This example is mostly an example of property 5 although there are a couple of uses of property 1 in the solution as well. We need to figure out how to correctly break up the integral using property 5 to allow us to use the given pieces of information. First we’ll note that there is an integral that has a “-5” in one of the limits. It’s not the lower limit, but we can use property 1 to correct that eventually. The other limit is 100 so this is the number c that we’ll use in property 5. ![]() ![]() ![]() We’ll be able to get the value of the first integral, but the second still isn’t in the list of know integrals. However, we do have second limit that has a limit of 100 in it. The other limit for this second integral is -10 and this will be c in this application of property 5. ![]() ![]() ![]() At this point all that we need to do is use the property 1 on the first and third integral to get the limits to match up with the known integrals. After that we can plug in for the known integrals. ![]() |
There are also some nice properties that we can use in comparing the general size of definite integrals. Here they are.
More Properties
7. ![]() ![]() 8. If ![]() ![]() ![]() ![]() ![]() ![]() ![]() 9. If ![]() ![]() ![]() ![]() ![]() ![]() 10. If ![]() ![]() ![]() ![]() ![]() ![]() 11. ![]() ![]() ![]() |
Interpretations of Definite Integral
There are a couple of quick interpretations of the definite integral that we can give here.
First, as we alluded to in the previous section one possible interpretation of the definite integral is to give the net area between the graph of 
and the x-axis on the interval [a,b]. So, the net area between the graph of 

and the x-axis on [0,2] is,





![]() ![]() ![]() |
If you look back in the last section this was the exact area that was given for the initial set of problems that we looked at in this area.
Another interpretation is sometimes called the Net Change Theorem. This interpretation says that if 

is some quantity (so 

is the rate of change of 

, then,









![]() ![]() ![]() |
is the net change in 

on the interval [a,b]. In other words, compute the definite integral of a rate of change and you’ll get the net change in the quantity. We can see that the value of the definite integral, 
, does in fact give use the net change in 
and so there really isn’t anything to prove with this statement. This is really just an acknowledgment of what the definite integral of a rate of change tells us.







So as a quick example, if 
is the volume of water in a tank then,


![]() ![]() ![]() |
is the net change in the volume as we go from time 


to time 


.








Likewise, if 
is the function giving the position of some object at time t we know that the velocity of the object at any time t is : 
. Therefore the displacement of the object time 

to time 

is,










![]() ![]() ![]() |
Note that in this case if 
is both positive and negative (i.e. the object moves to both the right and left) in the time frame this will NOT give the total distance traveled. It will only give the displacement, i.e. the difference between where the object started and where it ended up. To get the total distance traveled by an object we’d have to compute,


![]() ![]() |
It is important to note here that the Net Change Theorem only really makes sense if we’re integrating a derivative of a function.
No hay comentarios:
Publicar un comentario